Sulphur Dioxide Removal by Zeolitic Tuff: An Experimental Study

Mohammad Al-Harahsheh1,2, Marwan Batiha1, Kamel Al-Zboon, Adnan Al-Harahsheh3, Reyad Shawabkeh4, Khalid Tarawneh1

\texttt{Al-harahsheh@ahu.edu.jo}

1Faculty of Engineering, Al-Hussein Bin Talal University, Maan, Jordan
2Jordan University of Science and Technology. Irbid, Jordan
3Faculty of Engineering, Mutah University, Karak, Jordan,
4Faculty of Engineering, KFUPM, Riyadh, KSA

Project is Funded by Al-Hussein Bin Talal University & SRTD from EU
Talk Outline

• Background Information
• Aims and Objectives
• Experimental Work
• Results and Discussion
• Conclusions
Jordan has huge reserves of oil shale but its utilization is limited due to several factors including the high sulfur content.

Combustion of OS generates large quantities of SO_2 \(\rightarrow\) Air pollution problem & acid rain.

Solutions for such problem might be:

- Utilization of the high calcium content in the oil shale
- Use sulphur removal technologies based on adsorption or absorption
 - Regenerative
 - Non-regenerative
The aim of this project was to study various scenarios for removal of SO$_2$ from off streams utilizing the natural resources available in Jordan.

Materials tested so far

- Absorption of SO$_2$ by Dead Sea, Red Sea and Saline water
- Adsorption of SO$_2$ by Oil shale ash
- Adsorption on Zeolitic Tuff
Zeolite occurs as a cementing material to volcanic tuff granules.

Zeolites are hydrated aluminosilicates of the alkali and alkaline earth metals.

- Consist of three-dimensional frameworks of \(\text{AlO}_4 \) and \(\text{SiO}_4 \) tetrahedra.

Jordanian ZT contains 20-70% (avg 50%) zeolite minerals:

- Phillipsite and Chabazite are most predominant.
- Faujasite less common.
<table>
<thead>
<tr>
<th>Area</th>
<th>Geological reserves (MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall Rmah</td>
<td>46</td>
</tr>
<tr>
<td>Al-Aritain</td>
<td>170</td>
</tr>
<tr>
<td>Tlol</td>
<td>9.2</td>
</tr>
<tr>
<td>Al-Shahba</td>
<td></td>
</tr>
<tr>
<td>North east Areas</td>
<td>472</td>
</tr>
<tr>
<td>Other areas</td>
<td>1340</td>
</tr>
</tbody>
</table>
EXPERIMENTAL WORK
Experimental system

A UIC sulfur coulometer (model number CM50155) was used for the continuous determination of total sulfur.
Experimental system
Experimental work

- 5000 ppm SO₂ in balance of N₂
- 30 ml/min (chosen so that the instrument can cope with SO₂)
- 5 g sample
- Bed diameter: 10mm & bed length 100-160 mm
- Main ZT sample was from Aritain area (red in colour)
- Characterization: XRD, XRF, SEM, BET SA, TGA & DTA
- Parameters studied:
 - Effect of particle size
 - Effect of Drying
 - Effect of locality (zeolite content)
 - Effect of Ads. temperature
 - Effect of thermal pre-treatment of ZT on Ads at room T
 - Regeneration options: Thermal
RESULTS AND DISCUSSION
XRD of the main sample

- Phillipsite
* - Chabazite
+ - Diopside (CaMgSi$_2$O$_6$)
BET surface area

<table>
<thead>
<tr>
<th>Particle size, µm</th>
<th>Surface area, m²/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>250-500</td>
<td>91.1</td>
</tr>
<tr>
<td>2000-4000</td>
<td>85.9</td>
</tr>
<tr>
<td>2000-4000 dried at 105°C</td>
<td>86.79</td>
</tr>
</tbody>
</table>
ADSORPTION EXP. WORK
Effect of particle size

SO$_2$ adsorbed, µmol/g

Time, min.

SO$_2$ out, µmol/g

Breakthrough times: 28.5, 27.5, 20.5 and 17 min

- 250-500 µm
- 500-1000 µm
- 1000-2000 µm
- 2000-4000 µm
Effect of Temperature

SO₂ Adsorbed, µmol/g

2000-4000 µm
30 mL/min
5 g sample

Time, min.

0 50 100 150 200 250 300 350

150°C
200°C
100°C
18°C
300°C
500°C
Effect of drying

$\text{SO}_2, \mu\text{mol/g}$

2000-4000 μm
30 mL/min
5 g sample

Non Ads. SO_2 on As Received

Ads. On as Received sample

17 min
Effect of drying 1

Moisture removed: 4.5%

SO₂ Adsorbed, µmol/g

2000-4000 µm
30 mL/min
5 g sample

As Received -out
Dried at 105°C -Ads

Dried at 105°C-out

Time, min.

0 50 100 150 200 250 300 350

88 min
Effect of drying 2

SO₂ Adsorbed, µmol/g

- As received
- Dried at 105°C
- Microwave dried
- As received - out
- Dried at 105°C - out
- Microwave dried - out

Moisture removed by MW: 6.5%

Time, min.

95 min
Effect of sample source (zeolite content)

- SO2 out, µmol/g
- SO2 Ads. µmol/g
- Time, Min

- Main Sample No1-
- Red Magais & Quais
- JGTGC red
- JGTGC Black
Effect of Thermal Pretreatment on Uptake capacity

- **Ads. @ room T**
 - 2000-4000 µm
 - 30 mL/min
 - 5 g sample

Graph Details
- **SO₂ Adsorbed, mmol/g**
- **Time, min.**
- Curves represent adsorption at different temperatures:
 - 18 °C
 - 200 °C
 - 250 °C
 - 300 °C
 - 400 °C
 - 500 °C
Effect of Thermal Pretreatment Breakthrough Time

[Graph showing the relationship between Pretreatment Temperature (°C) and Breakthrough time (min), with lines indicating SO2 adsorbed at BTT (µmol/g).]

- Breakthrough time, min
- SO2 adsorbed at BTT, µmol/g
Effect of Thermal Pretreatment
Phase Change

@ 250 °C intensity of Ph. Peaks increased
@ 300 °C Ph. disappeared

- Phillipsite
* - Chabazite
◊ - Diopside
Effect of Thermal Pretreatment: Phase Change

- Phillipsite
* - Chabazite
◊ - Diopside

Intensity, counts

Angle, 2θ, °
Effect of Thermal Pretreatment

Phase Change

- Phillipsite
* - Chabazite
◊ - Diopside

Intensity, counts

Angle, θ, °

400°C
300°C
250°C
200°C
untreated
Thermal Regeneration

SO$_2$ Ads., µmol/g

Time, min

- First Ads. cycle
- First Regen Cycle
- Second Regen Cycle
- Third Regen Cycle
Thermal Regeneration of 3rd Ads. cycle

- Flushing with N\(_2\) @ Room T
- Flushing with N\(_2\) @ heating at 100\(^\circ\)C
- Flushing with N\(_2\) @ heating at 200\(^\circ\)C

![Graph showing SO\(_2\) removal over time with different flushing conditions.](Image)

- 27% removed
- 60% removed
- 12% removed

Amount of SO\(_2\), µmol/g vs Arbitrary Time, min.
Conclusions

• The effect of various parameters on the adsorption of SO$_2$ by ZT tuff has been investigated; including Particle size, locality, temperature, thermal pretreatment

• The optimum adsorption temperature for SO$_2$ is between 150 and 200°C

• Moisture removal from ZT is crucial for better adsorption results.

• The change of SO$_2$ Adsorption capacity of ZT after thermal treatment is related to moisture removal and minerals phase change.
 • It is recommended to carry out adsorption at 200°C or above 400°C
 • The type zeolite phase present in ZT dictates the thermal treatment T

• Thermal regeneration is possible and it has positive effect on adsorption capacity of ZT
THANK YOU FOR YOUR ATTENTION ANY QUESTION?