Demonstration and Commercial Design of the Clean Shale Oil Surface Process

L. Douglas Smoot, Kent E. Hatfield, Craig N. Eatough
Combustion Resources Inc., Provo, UT

31st Oil Shale Symposium
Golden, Colorado, 17-19 October 2011
Acknowledgements

- Department of Energy/SBIR
 - Robert Vagnetti, Program Manager

- CR Colleagues
 - Steven Eatough
 - Robert Jackson
 - Ambar M. Ochoa

- Intertek PARC, Inc
 Shale Oil Upgrading Tests
• Contract Objective – Demonstrate and Evaluate an Advanced Technology for Surface Processing of Oil Shale

• Presentation
 - Process Description
 - Pilot Plant Process Testing and Modeling
 - Preliminary Commercial Design and Cost
C-SOS General Flow Diagram

2. Shale Oil Production

3. Shale Oil Upgrading

1. H₂ Production

5 ton/day Pilot Plant
Simple Process Option for Production of Crude Shale Oil

C-SOS Process (Simple Option)
• Simple, low capital cost, horizontal design
• Commercially-available components
• Unique, high-capacity kiln
• Processing of fines
• Projected low process water use
• Minimum shale carbonate decomposition
• Option for on-site production of motor fuels
• Option for little or no carbon dioxide emissions
• Option for on-site hydrogen production
Aft-End Oil Product Separation Unit
- Indirect-Fired Rotary Kiln
- 0.83 ft diameter shell
- 7 ft shell heated length
- Natural gas
- Patent-pending firing configuration
- Medium grade 28 gal/ton
- Shale Feed Rate – 2-6 TPD
- Shell rotation rate, 6-18 rpm
- Shell temperature, 800-500 °C
- Residence time, 5-15 min
- Avg. particle dia., 1.9-2.2 mm
- Steam sweep gas, 0-5 %
- Feedstock shale properties
- Kiln exit solid temperature
- Kiln shell temperature along length
- Mass flowrate/properties
 * Spent shale
 * Shale oil/cuts
 * Fuel gas
• 36 Tests (Past 10 months)
• Optimum Conditions
 - 4–5 tons/day
 - 1.9 mm diameter shale
 - 12 rpm
 - 94 % (F/A) oil conversion
 - 5 min residence time
• Test Challenges
 - Small Particle Separation
 - Sharp Oil Cuts (heat loss)
Potential for Kiln Capacity Increase

- Larger Burner Capacity
- Higher Wall Temperatures
- Preheat Feedstock Shale
- Two Stage Cyclone
Test Conditions Input
- 94% F/A oil conversion
- 700 °C initial shell temperature
- 500 °C solid exit temperature
- 12 rpm
- 5% steam, 400 °C

<table>
<thead>
<tr>
<th></th>
<th>Pilot Test</th>
<th>Kiln Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shale Feedrate, TPD</td>
<td>4.2</td>
<td>4.4</td>
</tr>
<tr>
<td>Residence Time, min</td>
<td>-</td>
<td>4.6</td>
</tr>
<tr>
<td>Fill Fraction</td>
<td>-</td>
<td>0.09</td>
</tr>
<tr>
<td>% Carbonate Decomposition (CO₂)</td>
<td>-</td>
<td>3.5</td>
</tr>
</tbody>
</table>

4.4 Tons/day (CH4 Fuel)

Final Values:
Ts = 492 C
Tg = 502 C
% CO₂ released = 3.5
FR = 0.94
• 6000 TPD Oil Shale Plant
 - Three Kilns
• 6000 TPD with Onsite Oil Upgrading
• 2000 TPD – Waste Fines
 - Single Kiln

Common Conditions
Shell:
 12 ft shell diameter
 127 ft heated shell length
 2 rpm, 1° slope
 Residence time – 50 min

Shale:
 1.9 mm diameter
 36 gal/ton
 Fuel gas/Natural gas
 Total Oil Collection
Commercial Indirect Fired Rotary Kiln
(3.5 ft diameter, 35.4 ft long, Photo Courtesy Heyl and Patterson, Inc.)
• **Test Conditions Input**
 - 98 % F/A oil conversion
 - 900 °C initial shell temp.
 - ca. 500 °C solid exit temp.
 - 2 rpm
 - 3.5% steam, 400 °C

<table>
<thead>
<tr>
<th>Kiln Code</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shale Feedrate, TPD</td>
<td>2000</td>
</tr>
<tr>
<td>Residence Time, min</td>
<td>52</td>
</tr>
<tr>
<td>Fill Fraction</td>
<td>0.13</td>
</tr>
<tr>
<td>% Carbonate Decomposition (CO₂)</td>
<td>10</td>
</tr>
</tbody>
</table>

Reference Case - 2000 Tons/day (CH4 Fuel)

Final Values:
- $T_s = 456$ °C
- $T_g = 505$ °C
- % CO₂ released = 10.7
• **Indirect-Fired Rotary Kiln**

 Cross-fired burners

 12 ft diameter

 127 ft long

 HB 800 alloy

 900°C peak shell temperature

 500°C peak shale temperature

 36 gal/ton shale oil

 2 mm shale diameter

 3.5 % sweep steam
Assumptions

- NREL guidelines
- Eastern Utah location
- Open pit mining
- Installed costs 2.7 x equip. cost
- 15 % project contingency
- 10 % process contingency
- 5 % construction interest
- 10 % owner costs/startup

- 330 days/year
- Current: wage rates, utilities, depreciation
- 20 year plant life
- 30 % discount, if no oil upgrade
- Fuel gas 60 % of kiln need
- Recovery of sulfur
<table>
<thead>
<tr>
<th></th>
<th>Opt. 1</th>
<th>Opt. 2</th>
<th>Opt. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three kilns 6000 TPD crude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap. Cost ($ millions)</td>
<td>198</td>
<td>254</td>
<td>48</td>
</tr>
<tr>
<td>Cap. Cost per (bbl/year)</td>
<td>116</td>
<td>135</td>
<td>85</td>
</tr>
<tr>
<td>Oil produced (1000 bbl/year)</td>
<td>1700</td>
<td>1885</td>
<td>566</td>
</tr>
<tr>
<td>Annual Operating Costs ($ millions)</td>
<td>57</td>
<td>86</td>
<td>11</td>
</tr>
<tr>
<td>Product price ($/bbl)</td>
<td>57</td>
<td>80</td>
<td>68</td>
</tr>
<tr>
<td>Annual Revenue ($ millions)</td>
<td>95</td>
<td>151</td>
<td>38</td>
</tr>
<tr>
<td>Net Annual Revenue (less op. cost)</td>
<td>38</td>
<td>65</td>
<td>27</td>
</tr>
<tr>
<td>% Net Annual revenue before taxes/cap. cost</td>
<td>20</td>
<td>26</td>
<td>32</td>
</tr>
</tbody>
</table>
• Phase II DOE/SBIR nearly complete
• Pilot plant demonstrated process
• Kiln code/process code – vital tools
• Attractive Options
 - Upgrading oil onsite
 - Process fines stockpile
• Intermediate-Scale Testing Required
• Improve Oil Recovery
• Verify discoveries for kiln capacity increase
• Increase fine particulate removal
Doug Smoot, Kent Hatfield, Craig Eatough
Combustion Resources, Inc.

To Obtain Copy of
Preliminary Commercial Design/Cost Report

Give Business Card to
Doug Smoot or Craig Eatough or
Leave at CR Poster