Geochemical Evolution of Piceance Basin Groundwater During Heating

Carl D. Palmer, Jessica Little, Earl Mattson
Idaho National Laboratory

31th Oil Shale Symposium
October 17-21, 2011
Geochemical Modeling Results

Temperature (°C)
- Retort Zone
- 3 years
- 2 years
- 1 year
- 0.5 year

Fluoride
- Concentration (mmol/L)
- Retort Zone
- Concentration Exceeds Background

Total Nitrogen
- Concentration (mmol/L)
- Retort Zone
- Concentration Exceeds Background

Aluminosilicates
- Concentration
- Retort Zone
- Analyte
- Ankerite
- Low Albite
- Fe-Mg Saponite
- Weight %

Distance (m)
Mineralogical Changes in Retorted Oil Shale

Powder X-ray Diffraction

Graph showing the concentration of various minerals with temperature.
Objective:

To develop models of the geochemical evolution of groundwaters from the Piceance Basin during heating

Approach:

• Determine the natural groundwater composition and thermodynamic status using Phreeqc-Interactive,
• Simulate chemical evolutions during evaporation,
• Estimate the type and amounts of precipitates that may be formed.
Data Sources

- CSM database,
- Kimball (1984),
- USGS and other reports
Issues

• Many reported pH values are not reliable,
• Aluminum values are often missing or unreliable,

Potential Solutions

• Calculate pH on the assumption of calcite equilibrium,
• Calculate Al activity on assumption of gibbsite equilibrium,
Piper Plot
Mineral Saturation Indices

Based on data from Kimball (1984)
Mineral Saturation Indices

Based on data from Kimball (1984)
Mineral Saturation Indices

Based on data from Kimball (1984)

Feldspars

Sample

0 5 10 15 20 25

Saturation Index

-3
-2
-1
0

High Albite
Low Albite
K-Feldspar

Upper Lower Aquifer

Saturation Index

-3
-2
-1
0

Feldspars

K-Feldspar
Low Albite
High Albite

Upper Lower Aquifer

Sample
Mineral Saturation Indices

Based on data from Kimball (1984)

Montmorillonite

Sample

0 5 10 15 20

Saturation Index

-1 0 1 2

Montmor-Ca
Montmor-K
Montmor-Mg
Montmor-Na

Col 5 vs Col 6

Upper Aquifer
Lower Aquifer

Montmorillonite

Based on data from Kimball (1984)
Mineral Saturation Indices

Based on data from Kimball (1984)

Clays

Sample

Saturation Index

Upper Aquifer Lower Aquifer

Beidellite-K
Montmor-K
Saponite-Mg
Illite
Kaolinite

Sample
Evaporation within Mineral Matrix – Upper Aquifer

Ionic Strength

\[\text{Ionic Strength (mol/kg)} \]

\[\begin{array}{c|c|c|c|c|c|c|c}
\% \text{ Liquid H}_2\text{O Remaining} & 1 & 10 & 100 \\
\hline
\text{Ionic Strength} & 0.01 & 0.1 & 1 \\
\end{array} \]

\[\text{pH} \]

\[\begin{array}{c|c|c|c|c|c|c|c}
\% \text{ Liquid Water Remaining} & 100 & 10 & 1 \\
\hline
\text{pH} & 5.5 & 6.0 & 6.5 & 7.0 & 7.5 & 8.0 & 8.5 \\
\end{array} \]
Evaporation (Upper Aquifer)

% Liquid H_2O Remaining

Concentration (mol/kg)

1×10^{-5}
1×10^{-4}
1×10^{-3}
1×10^{-2}
1×10^{-1}
1×10^{0}

Na
Cl
C
Mg
Ca
K
Evaporation (Upper Aquifer)

% Liquid Water Remaining

Mineral Reacted (mol/kg)

-0.00010
-0.00005
0.00000
0.00005
0.00010
0.00015
0.00020

Calcite
Disordered Dolomite

-0.006
-0.004
-0.002
0.000
0.002
0.004
0.006

Quartz
Gibbsite
Dawsonite

-4e-5
-2e-5
0
2e-5
4e-5
6e-5

Fluorite
Illite
Experiments

An experimental apparatus has been designed and built to study the evolution of fracture permeability as precipitates form from boiling solutions.
Summary

• We have initiated a modeling study of the groundwater geochemistry in the Piceance basin to determine the thermodynamic state of those waters,

• We have simulated the evolution of Piceance Basin groundwaters undergoing evaporation,

• These simulations will improve our understanding of potential groundwater impacts and permeability evolution,

• Next Steps are to:
 ➢ Simulate the evaporation of other groundwaters in the basin,
 ➢ Determine the effects of temperature on groundwater composition
 ➢ Experimentally investigate evolution of oil shale fracture permeability as waters boil and precipitates form.