Recovery of Liquid Hydrocarbons from Oil Shale Using Supercritical CO$_2$

S.H. Riley, G.S. McGrady, L. Romero-Zeron, D.G. Keighley* & A.F. Park

University of New Brunswick, Fredericton, New Brunswick, Canada. E3B 5A3

*speaker, (e-mail: keig@unb.ca)
Background

McGrady Group @ UNB

Hydrogen Storage

LiAlH$_4$ – US DOE ‘near-term material’

Oil Sands Processing

Supercritical fluid hydroprocessing of bitumen

Catalysis

Mn catalyst for hydrosilation

Smart Materials

Coloured conductive paper

Energy Efficiency and Renewable Energy
SCF Hydroprocessing of Bitumen using Hexane or Pentane:

Brough, Riley, McGrady et al. Chemical Communications (2010)

Sample	**API Gravity (°)**	**H/C Ratio**	**Sulfur %**	**Viscosity (cP)**	**Asphaltenes %**
BITUMEN | 7.8 | 1.52 | 4.77 | 940,000 | 34.2
UPGRADED IN SC-HEXANE | 22.2 | 1.85 | 0.48 | 88 | 0.1
UPGRADED IN SC-PENTANE | 21.1 | 1.75 | 0.54 | 79 | 0.2

Background

McGrady Group @ UNB

Asphaltenes
- **36 %**

Resins
- **11 %**

Saturates
- **19 %**

Aromatics
- **34 %**

Resins
- **1 %**

Saturates
- **40 %**

Aromatics
- **59 %**

BEFORE

AFTER
Background

Oil sands/bitumen versus Oil shale/kerogen

- Petroleum has migrated from source-rock kerogen
- Bitumen ceased flowing in (fine-grained) sandstone
- Petroleum still retained in source-rock kerogen
- Kerogen interlaminated with (very-) fine grained siltstone

Some previous work by Kessavan et al. (1988) Stuart oil shale & others (2011) on Jordanian oil shale

From: Bianco et al. SEG Heavy Oil

UNB 15.0kV 15.1mm x1.00k SE(M)
Background

Keighley et al. @ UNB

- Albert Formation (New Brunswick) oil shale & tight-gas reservoirs (correlation & seq. strat.)
- Green River Formation shale, oil shale & sandstone (correlation & seq. strat.)
- CO₂ sequestration as a SCF in New Brunswick’s subsurface repositories (feasibility reports)
Recovery of Liquid Hydrocarbons from Oil Shale Using Supercritical CO$_2$

S.H. Riley, G.S. McGrady, L. Romero-Zeron, D.G. Keighley* & A.F. Park

1. Introduction to supercritical CO$_2$
2. Experimental set-up
3. Sample material
4. Early results
5. Summary
1. Introduction to supercritical CO₂

Total miscibility with permanent gases → Remarkable reactivity

Excellent thermal/mass transfer → Enhanced reaction rates

Low surface tension → High penetration of porous materials (supported catalysts)

Gas/Liquid Phases

Subcritical Phase

Supercritical Fluid (SCF)
2. Experimental set-up

Reaction Station for Supercritical Fluids

Roto-Evap

CHNS-932 Analyses

TGA (Thermal Gravimetric Analysis)

Remove solvents (& any produced light oils - yet to be measured)

IR detectors (@1050°C) for S content & H/C ratio

Gradual heating in N₂ for wt% & vacuum residue

10g rubbed sample & CO₂ for 16hrs

± solvent: THF, Toluene, Hexane, or (Sc) Pentane

2000psi @ 60°C or higher
3. Sample material

Albert Formation, New Brunswick

Previous retorting work @ Albert Mines (Altius-held lease)

Current sampling near Norton

clays (illite, smectite, kaolinite & chlorite), carbonate (dolomite, calcite & siderite), feldspar (albite & K-feldspar) quartz, analcime, pyrite
4. Early results

ScCO$_2$ extraction of oil from Albert oil shale

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Weight % of Shale</th>
<th>% Oil</th>
<th>H/C Oil</th>
<th>% Sulfur</th>
<th>Vacuum Residue Wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retorted Oil</td>
<td>450</td>
<td>90.4</td>
<td>9.6</td>
<td>1.59</td>
<td>.228</td>
</tr>
<tr>
<td>ScCO$_2$</td>
<td>60</td>
<td>99.0</td>
<td>1.0</td>
<td>1.79</td>
<td>0.170</td>
</tr>
<tr>
<td>ScCO$_2$</td>
<td>160</td>
<td>72.1</td>
<td>27.9</td>
<td>1.7</td>
<td>0.374</td>
</tr>
<tr>
<td>ScCO$_2$</td>
<td>200</td>
<td>95.3</td>
<td>4.7</td>
<td>1.7</td>
<td>0.369</td>
</tr>
<tr>
<td>ScCO$_2$</td>
<td>250</td>
<td>87.2</td>
<td>12.8</td>
<td>1.75</td>
<td>0.306</td>
</tr>
</tbody>
</table>

Oil extraction at different temperatures using ScCO$_2$

Temperature (°C): 60, 160, 200, 250

- **60°C**
 - Weight % of Shale: 99.0%
 - % Oil: 1.0%
 - H/C Oil: 1.79
 - % Sulfur: 0.170
 - Vacuum Residue Wt %: 16.94

- **160°C**
 - Weight % of Shale: 72.1%
 - % Oil: 27.9%
 - H/C Oil: 1.7
 - % Sulfur: 0.374
 - Vacuum Residue Wt %: 13.76

- **200°C**
 - Weight % of Shale: 95.3%
 - % Oil: 4.7%
 - H/C Oil: 1.7
 - % Sulfur: 0.369
 - Vacuum Residue Wt %: 11.56

- **250°C**
 - Weight % of Shale: 87.2%
 - % Oil: 12.8%
 - H/C Oil: 1.75
 - % Sulfur: 0.306
 - Vacuum Residue Wt %: 21.32
4. Early results

ScCO$_2$ extraction of oil from Albert oil shale with co-solvents

<table>
<thead>
<tr>
<th>Co-Solvent</th>
<th>Temperature (°C)</th>
<th>Weight % of Shale</th>
<th>% Oil</th>
<th>H/C Oil</th>
<th>% Sulfur</th>
<th>Vacuum Residue Wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retorted Oil</td>
<td>450</td>
<td>90.4</td>
<td>9.6</td>
<td>1.59</td>
<td>0.228</td>
<td>43.40</td>
</tr>
<tr>
<td>THF</td>
<td>200</td>
<td>90.8</td>
<td>9.2</td>
<td>1.56</td>
<td>0.295</td>
<td>22.63</td>
</tr>
<tr>
<td>Toluene</td>
<td>200</td>
<td>90.2</td>
<td>9.8</td>
<td>1.66</td>
<td>0.400</td>
<td>11.81</td>
</tr>
<tr>
<td>Hexane</td>
<td>200</td>
<td>92.6</td>
<td>7.4</td>
<td>1.78</td>
<td>0.236</td>
<td>8.820</td>
</tr>
<tr>
<td>Sc Pentane</td>
<td>200</td>
<td>90.8</td>
<td>9.2</td>
<td>1.87</td>
<td>0.290</td>
<td>15.31</td>
</tr>
<tr>
<td>ScCO2</td>
<td>200</td>
<td>95.3</td>
<td>4.7</td>
<td>1.7</td>
<td>0.369</td>
<td>11.56</td>
</tr>
</tbody>
</table>
5. Summary

+ ScCO_2 extraction indicates high yield oil
+ H/C ratio indicates good quality oil
+ Low residue (bitumens)
+ Change in rock properties (enhanced permeabilities if in situ?)
5. Summary

To do ($):
- Co-solvents @ 60°C
- Multiple repeats (outlier reproduction?)
- Light H-C measurements
- Before-after mineralogy (any C sequestered?)
- Different rubble (initial particle size)
- Fractured rock (core & subsurface)
- Supplemental heating of scCO₂ using microwave & sonochemical energy