Early diagenetic controls affecting the inorganic composition of oil shale from the upper Green River Fm. (Mahogany Oil Shale Zone — Uinta Fm. boundary), Uinta Basin, Utah

David Keighley
Dept. of Earth Sciences
University of New Brunswick
Fredericton, NB, Canada

Research sponsored by
NSERC-Discovery
Utah Geological Survey
OUTLINE

1. Uinta Basin sedimentology & stratigraphy
2. Field Methods
3. ICP
4. XRD
5. SEM
6. Models
7. Summary
1. Uinta Basin sedimentology & stratigraphy

- Duchesne River Formation
- Uinta Formation
- Horsebench sandstone bed
- Mahogany oil shale
- Sunnyside delta facies
- Douglas Creek Member
- Flagstaff Formation
- North Horn Formation
- Green River Formation

- ~ 300m
- ~50km

- Cowboy Buck Gate
- Duchesne
- Price

- Department of Geology University of New Brunswick
2. Field Methods

- main sampling every 4m,
- ...plus tuff & all outcropping oil shale
- ICP (all samples), XRD & SEM (selected)
2. Field Methods
3. ICP
Buck (measured):
Phosphorus anomalies in some oil shale
- P abundance correlates positively (significance level, $\alpha = 0.01$) with U, Th, Sr
 & with REEs (particularly heavier REEs)

![Graph showing phosphorus, thorium, uranium, and strontium levels across different depths.]

Crystallized bed
@ 128.2 m = 6.3% (2 replicates)
3. ICP Buck (measured):
Phosphorus anomalies in some oil shale
- P abundance correlates positively (significance level, $\alpha = 0.01$) with U, Th, Sr & with REEs (particularly heavier REEs)

@ 128.2 m = 6.3% (2 replicates)
3. ICP
Buck (measured):
Phosphorus anomalies in some oil shale
- P abundance correlates positively (significance level, $\alpha = 0.01$) with U, Th, Sr & with REEs (particularly heavier REEs) - Each P anomaly has a unique REE signature

Note: Normalized against PAAS; box-whiskers for ALL samples
- Average values plot close to USGS SGR-1 reference sample
3. ICP

Buck (measured):
Phosphorus anomalies in some oil shale
- P abundance correlates positively (significance level, $\alpha = 0.01$) with U, Th, Sr
 & with REEs (particularly heavier REEs)
- Each P anomaly has a unique REE signature

Note: Normalized against PAAS; box-whiskers for ALL samples
- Average values plot close to USGS SGR-1 reference sample
3. ICP

Buck (measured):

Phosphorus anomalies in some oil shale
- P abundance correlates positively (significance level, $\alpha = 0.01$) with U, Th, Sr
& with REEs (particularly heavier REEs) - Each P anomaly has a unique REE signature

Note: Normalized against PAAS; box-whiskers for ALL samples
- Average values plot close to USGS SGR-1 reference sample
3. ICP

Correlation to other sections?

-all exposed oil shale beds sampled @ Gate (& Cowboy): possible matches
4. XRD
Buck:

Confirms phosphorus anomalies in some oil shale

Note: shales mostly marly – minimal clays

<table>
<thead>
<tr>
<th>Sample Horizon</th>
<th>Lithofacies</th>
<th>Quartz</th>
<th>Feldspars</th>
<th>Sheet silicates</th>
<th>Calcite</th>
<th>Dolomite</th>
<th>Zeolites</th>
<th>Phosphates</th>
</tr>
</thead>
<tbody>
<tr>
<td>152m</td>
<td>M</td>
<td>15</td>
<td>11</td>
<td>-</td>
<td>19</td>
<td>38</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>144m</td>
<td>M</td>
<td>11</td>
<td>21</td>
<td>6</td>
<td>21</td>
<td>41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>140m</td>
<td>M</td>
<td>14</td>
<td>21</td>
<td>-</td>
<td>28</td>
<td>37</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>137.2m</td>
<td>O</td>
<td>12</td>
<td>14</td>
<td>-</td>
<td>40</td>
<td>35</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>133.5m</td>
<td>O</td>
<td>10</td>
<td>13</td>
<td>-</td>
<td>56</td>
<td>21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>131m</td>
<td>O</td>
<td>11</td>
<td>16</td>
<td>14</td>
<td>33</td>
<td>26</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>128.2m</td>
<td>O</td>
<td>16</td>
<td>30</td>
<td>-</td>
<td>33</td>
<td>3</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>128.1m</td>
<td>O</td>
<td>1</td>
<td>14</td>
<td>-</td>
<td>58</td>
<td>27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>126m</td>
<td>S</td>
<td>29</td>
<td>14</td>
<td>-</td>
<td>28</td>
<td>29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>116m</td>
<td>M</td>
<td>7</td>
<td>33</td>
<td>6</td>
<td>12</td>
<td>42</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>112.4m</td>
<td>M</td>
<td>10</td>
<td>20</td>
<td>-</td>
<td>16</td>
<td>54</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>108.5m</td>
<td>O</td>
<td>9</td>
<td>14</td>
<td>-</td>
<td>35</td>
<td>28</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>104m</td>
<td>M</td>
<td>10</td>
<td>27</td>
<td>-</td>
<td>17</td>
<td>47</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>102.2m</td>
<td>O</td>
<td>8</td>
<td>14</td>
<td>-</td>
<td>53</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>92.6m</td>
<td>O</td>
<td>9</td>
<td>15</td>
<td>-</td>
<td>42</td>
<td>33</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>77.5m</td>
<td>O</td>
<td>-</td>
<td>55</td>
<td>3</td>
<td>9</td>
<td>33</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>66.2m</td>
<td>O</td>
<td>10</td>
<td>22</td>
<td>-</td>
<td>26</td>
<td>41</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: P confined to top ~ 5cm of oil shale
4. XRD

Buck:

Confirms phosphorus anomalies in some oil shale
- As calcium fluorapatite (CFA), e.g. 128.2m
4. XRD

Buck:
Confirms phosphorus anomalies in some oil shale
- As calcium fluorapatite (CFA), e.g. 128.2m
5. SEM
Buck:
Early diagenetic phase in calcite laminae
(pre-compaction & organic degradation)

Algal (?)Pediastrum) or substrate coccoid bacteria?

Calcite platelets (?) Calc green algae

UNB 10.0kV 14.6mm x300 SE(M)

UNB 15.0kV 15.0mm x4.50k SE(M)
5. SEM
Buck:
Early diagenetic phase in calcite laminae (pre-compaction & organic degradation)

Algal (?Pediastrum) or substrate coccoid bacteria?
Calcite platelets (? Calc green algae)
5. SEM

Buck:
Early diagenetic phase in calcite laminae
(pre-compaction & organic degradation)

CFA:

\[\text{Ca}_{10-a-b-c} \text{Na}_a \text{Mg}_b (\text{PO}_4)_{6-x} (\text{CO}_3)_{x-y-z} (\text{CO}_3,F)_y (\text{SO}_4)_z \text{F}_2 \]

where \(2c = x - y - a = \text{vacancies in the Ca site}\)

- F/P ratio is low, Ca/P is the expected apatite ratio of 1.67 \((r = 0.959)\)
- gradual reduction in Ca abundance correlates with increased Na (lattice substitution)
- reduction in S & P mitigated by >F content (counter charge imbalances in the lattice)
6. Models

If organic matter survives to burial, subsurface (bio-) geochemical degradation releases P into the pore waters.

-diffusion gradient = migration back to sed:water interface
6. Models

Anoxic interface = P returns to water column

Oxic interface = P adsorbed onto Fe/Mn oxyhydroxides
Most interpretations of P-rich black shales require (transient) oxic-anoxic transitions to bring P to supersaturation (with Ca, F, & S & REE) & precipitate CFA.

\[\text{biogeochem release rate} > \text{Diffusion rate in sulfate reducing zone} \]
\[= P \text{ saturation} \]
7. Summary

Phosphorus (& U, REE) anomalies occur in some upper Green River Fm. oil shale beds
- several anomalies with unique elemental proportions (possibly basinwide correlatable)

Elements combined in early diagenetic calcium fluorapatite
- in part fossilizing algae/substrate bacteria

Diagenetic conditions debatable
- oxic substrate not needed

Why not with ALL oil shales (e.g. 128.2 but not 131m)?
Acknowledgements

Field work assistance: Dan McIsaac, Nicola Harcourt, Adam Clowater, Lauren Birgenheier
Thin sections: Ancel Murphy, Calvin Nash
XRD: Ven Reddy
SEM: Suporn Boonsue, John Spray
ICP: Activation Laboratories
Funding: NSERC (Discovery), Utah Geological Survey (M. Vanden Berg; C. Morgan)

Comments, Questions?