Abstract

The Department of Mineral Fuels, Government of Thailand selected a test site at an oil shale mine operated by an energy company in the Mae Sot Basin (Thailand) for characterization by the Colorado School of Mines, Golden CO, United States, UMATS Industrial Processes, Calgary AB, Canada, Department of Mineral Fuels, Bangkok, Thailand. Twelve composite samples of core from the same group of horizons were cut through the bench scale ATP retort process at UMATS, Calgary, Alberta, Canada. The retort was operated in a year round production mode. The theoretical maximum oil shale retorting yield from 0.5 metric ton in dried sample.

The oil shale samples from potentially oil-rich horizons of interest in ten bore-sequences, whereas Naphtha and Kerosene decrease. The oil yield components (Heavy and Light Oil Gas) increase in the same sequence, whereas Naphtha and Kerosene decrease. The oil yield components (Heavy and Light Oil Gas) increase in the same sequence, whereas Naphtha and Kerosene decrease. The oil yield components (Heavy and Light Oil Gas) increase in the same sequence, whereas Naphtha and Kerosene decrease. The oil yield components (Heavy and Light Oil Gas) increase in the same sequence, whereas Naphtha and Kerosene decrease. The oil yield components (Heavy and Light Oil Gas) increase in the same sequence, whereas Naphtha and Kerosene decrease. The oil yield components (Heavy and Light Oil Gas) increase in the same sequence.