Heat Conduction Modeling Tools for Screening In Situ Oil Shale Conversion Processes

William A. Symington, P. Matthew Spiecker

28th Oil Shale Symposium
Colorado School of Mines
October 14, 2008
In Situ Oil Shale Screening Calculations Address the Most Critical Aspects of the Process Physics

Full Physical Problem
- Thermal conduction and advection
- Coupled geomechanical model for predicting permeability creation
- Kinetic model of kerogen chemical decomposition
- Secondary cracking of oil to lighter hydrocarbons and coke
- Multi-phase fluid flow of oil, gas, and water
- Multi-component hydrocarbon phase behavior model

Screening Calculations
- Thermal Conduction
- Kinetic model of kerogen chemical decomposition
Screening Tools Utilize Linear Heat Conduction Theory and Basin Modeling of Source Rocks

Linear Heat Conduction Theory

Rectangular solid heated by ΔT degrees at time, $t = 0$

$$T = T_0 + \Delta T \cdot f(x,t) \cdot g(y,t) \cdot h(z,t)$$

where:

$$f(x,t) = \frac{1}{2} \left(\text{erf} \left(\frac{a - x}{2\sqrt{\alpha t}} \right) + \text{erf} \left(\frac{a + x}{2\sqrt{\alpha t}} \right) \right)$$

$$g(y,t) = \frac{1}{2} \left(\text{erf} \left(\frac{b - y}{2\sqrt{\alpha t}} \right) + \text{erf} \left(\frac{b + y}{2\sqrt{\alpha t}} \right) \right)$$

$$h(z,t) = \frac{1}{2} \left(\text{erf} \left(\frac{c - z}{2\sqrt{\alpha t}} \right) + \text{erf} \left(\frac{c + z}{2\sqrt{\alpha t}} \right) \right)$$

Basic Initial Value Problem (*)

- Arbitrary heat sources modeled as time sequences of a basic initial value problem.
- Complicated heating programs can be treated as a series of “heaters” turned on/off.
- Basic anisotropy can be included.
- Calculations done only at sites of interest.

Basin Modeling of Source Rocks

- Can use end member source rock types or measured kinetics.
- Simplified chemistry model.

Kerogen \Rightarrow Oil + Gas + Coke

Oil \Rightarrow Gas + Coke

- First order reaction kinetics.

Example Activation Energy Spectrum

$$\frac{dK}{dt} = A \sum_i f_i e^{\frac{E_i}{RT}}$$

Example Calculated Yield

Screening Calculations Follow a Generalized Procedure

• Describe heating scenario as a set of rectangular volumetric heaters.
• Include all heaters with an impact on the zone of interest.

• Sum up total oil & gas generated.
• Compare to heat energy input.

• Superpose heaters to calculate temperature history at points of interest.

• Convolve thermal histories with basin modeling source rock model to calculate oil & gas generation history.
• Use full math model or relate fractional conversion to maximum temperature reached.

\[
\frac{dK}{dt} = A \sum_i f_i e^{E_{\text{act}}/RT}
\]
Screening Calculations Follow a Generalized Procedure

- Describe heating scenario as a set of rectangular volumetric heaters.
- Include all heaters with an impact on the zone of interest.
- Superpose heaters to calculate temperature history at points of interest.
- Sum up total oil & gas generated.
- Compare to heat energy input.
- Use full math model or relate fractional conversion to maximum temperature reached.

Electrofrac Screening Analysis Parameters
(Based on Green River Oil Shale)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Capacity (BTU/lb-°F)</td>
<td>0.3</td>
</tr>
<tr>
<td>Thermal Conductivity (BTU/day-ft-°F)</td>
<td>25</td>
</tr>
<tr>
<td>Density (lb/ft³)</td>
<td>137</td>
</tr>
<tr>
<td>Thermal Diffusivity (ft²/day)</td>
<td>0.607</td>
</tr>
<tr>
<td>Temperature window for conversion at 180 °F/year (°F)</td>
<td>500 to 615</td>
</tr>
<tr>
<td>Oil Shale Richness (gallons/ton)</td>
<td>30</td>
</tr>
</tbody>
</table>
Electrofrac Fractures are Parsed into Small Uniform Heaters for Screening Tool Application

Voltage in a “Long” Fracture is Nearly Linear

Permits a 2-D Treatment of Heat Transfer

(dimensions in feet)
Screening Tools Permit Evaluation of Overall Process Effectiveness

- **Case Specifics**: 150-foot fracture height, 5-year heating program sufficient to convert 200 feet of oil shale, 100-foot fracture spacing.

- **Heating Efficiency**: Ratio of oil shale actually converted to the oil shale that could be converted by the heat input (59% for this case)
Screening Tools Can Consider Numerous Cases, Varying Multiple Process Parameters

Five-year Heating Program
150-foot Fracture Height

Heating Efficiency

Spacing (feet)
- 40
- 60
- 80
- 100
- 120
- 140

Heat Input, feet of oil shale
Screening Tools Can Consider Numerous Cases, Varying Multiple Process Parameters

Tip-to-Tip Fracture Height

- 100 Feet
- 150 Feet
- 200 Feet
- 250 Feet

Heating Program Length
- 3 years
- 5 years
- 7 years

Heating Efficieny

Heat Input, feet of oil shale

Spacing (feet)

40 60 80 100 120 140

Heating Efficiency

40 60 80 100 120 140

Tip-to-Tip Fracture Height

100 Feet 150 Feet 200 Feet 250 Feet

The Colorado Energy Research Institute & The Colorado School of Mines 28th Oil Shale Symposium October 13-17, 2008 at the Cecil H. & Maude Green Center, Colorado School of Mines, Golden, Colorado
Screening Tools Indicate Multiple Layers of Electrofracs Improve Heating Efficiency

- **Case Specifics**\(^(*)\): 150-foot fracture height (2 layers), 5-year heating program sufficient to convert 325 feet of oil shale, 120-foot fracture spacing.
- **Heating Efficiency**: 74%

\(^(*)\) – "ExxonMobil's Electrofrac™ Process for In Situ Oil Shale Conversion", 2006, Symington, et. al.
Screening Tools Indicate Multiple Layers of Electrofracs Improve Heating Efficiency

- **Case Specifics**\(^{(*)}\): 150-foot fracture height (2 layers), 5-year heating program sufficient to convert 325 feet of oil shale, 120-foot fracture spacing.

- **Heating Efficiency**: 74%

\(^{(*)}\) – “ExxonMobil's Electrofrac™ Process for In Situ Oil Shale Conversion”, 2006, Symington, et. al.
Screening Tools Can Assess Severity of Process Imperfections – Example: Fracture Placement

Heating Efficiency is Relatively Insensitive to Minor Errors in Fracture Placement

Temperature after Five-year Heating Program

Heating Efficiency

Vertical Offset, ft

ºF

0–100
100–200
200–300
300–400
400–500
500–600
600–700
700–800
800–900
900–1000
1000–1100
1100–1200
1200–1300
1300–1400
1400–1500
1500–1600

100 ft

Spot on

15-foot miss

30-foot miss

45-foot miss

60-foot miss

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 15 30 45 60

Vertical Offset, ft
Screening Tools Can Assess Resource Suitability for In Situ Processes – Rundle Example

- Esso-operated asset, originally acquired in 1980.
- Extensional half-graben with probable recent compressional reactivation.
- Historically considered a candidate for mining and surface retorting. Attention focused on Kerosene Creek Member.
- Screening tools used to evaluate in situ potential of deeper Brick Kiln and Ramsay Crossing Members.

(*) – “Cyclic Depositional Sequences in the Rundle Oil Shale Deposit”, 1983, L. Cosshel
Rundle Screening Study Considered Multiple Electrofrac Heater Arrangements

- Study focused on application of Electrofrac to Rundle Brick Kiln and Ramsay Crossing Members.
- Shallow depth and recent compressional tectonics indicate bedding-parallel fractures are likely.
- Screening study varied numerous parameters.
 - Geometry
 - Fracture size
 - Fracture spacing
 - Heat input
 - Heating duration
 - Physical properties

Screening Analysis Physical Parameters

<table>
<thead>
<tr>
<th></th>
<th>Electrofrac Screening (Green River)</th>
<th>Rundle Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Capacity (BTU/lb-ºF)</td>
<td>0.3</td>
<td>0.468</td>
</tr>
<tr>
<td>Thermal Conductivity (BTU/day-ft-ºF)</td>
<td>25</td>
<td>6.2</td>
</tr>
<tr>
<td>Density (lb/ft³)</td>
<td>137</td>
<td>135</td>
</tr>
<tr>
<td>Thermal Diffusivity (ft²/day)</td>
<td>0.607</td>
<td>0.098</td>
</tr>
<tr>
<td>Temperature window for conversion at 180 ºF/year (ºF)</td>
<td>500 to 615</td>
<td>514 to 644</td>
</tr>
<tr>
<td>Oil Shale Richness (gallons/ton)</td>
<td>30</td>
<td>19 to 22</td>
</tr>
</tbody>
</table>
Overall Process Effectiveness Depends Most Strongly on Extent of Heated Interval

- Staggered, overlapping fractures are highly efficient.
- Highest efficiencies occur when heating the entire Brick Kiln to Lower Ramsay Crossing interval.
- Lower thermal conductivity limits vertical spacing.
- Rundle’s higher heat requirement (relative to Green River) may be offset by higher heating efficiency.

Seven Layers of 150-foot Staggered Fractures
(Suitable for Brick Kiln to Lower Ramsay Crossing)

Heating Program
- 3 years
- 5 years
- 7 years

Fracture Spacing
- 45 ft
- 60 ft
- 75 ft
- 90 ft

Three Layers of 150-foot Fractures
(Suitable for Brick Kiln Member)
Heating the Brick Kiln / Ramsay Crossing Interval Provides a High Heating Efficiency

- **Case Specifics**: 150-foot fracture width (7 layers), 5-year heating program sufficient to convert 400 feet of oil shale, 60-foot vertical fracture spacing.
- **Heating Efficiency**: 94%
Heating the Brick Kiln / Ramsay Crossing Interval Provides a High Heating Efficiency

- **Case Specifics**: 150-foot fracture width (7 layers), 5-year heating program sufficient to convert 400 feet of oil shale, 60-foot vertical fracture spacing.

- **Heating Efficiency**: 94%

Temperature

Normalized Hydrocarbon Generation

- **Total Generation**
- **Generation Rate**

Fraction of Kerogen Converted

Time, years

View Direction

End of Heating

Legend

- 0°F
- 0.0
- 1.0
- 2.5 years
- 15 years
- 50 ft
- 0.0
- 1.0
Screening tools based on linear heat conduction and basin modeling source rock calculations provide useful estimates of process effectiveness and resource suitability.

- For *in situ* process development work, screening tools can:
 - Estimate process conversion.
 - Examine impacts of process parameters such as heating geometry, size, spacing, total heat input, and heating duration.
 - Assess process sensitivity to implementation problems such as imperfect heating geometry or performance.

- For resource assessment work, screening tools can:
 - Estimate the resource suitability for *in situ* processing.
 - Examine the impact of rock physical property variations.