IMPEDEANCE MICROSTRUCTURE OF KEROGEN SHALES

Manika Prasad
Rock Abuse Laboratory
Colorado School of Mines

Presented at the 27th Oil Shale Symposium at CSM on October 17, 2007
OUTLINE

• Motivation
• Working Principles
• Quantitative Studies
• Ultrasonic Impedance Analyses
• Impedance Microstructure
• Conclusions
MOTIVATION

- Microstructural investigations based on impedance changes
- Quantitative impedance mapping
- Mapping with 1 - 100 μm resolution
 - quantify textures as impedance values
 - quantify textural changes with maturation
- Non-destructive evaluation
• High porosity kerogen shales resemble sandstones
• Low porosity kerogen shales require different approach

Data from Vernik and Liu, 1997

27th Oil Shale Symposium at CSM
MATURATION - VELOCITY RELATION

Vp increases with maturity in low porosity kerogen shales.

Vp (km/s)

7
6
5
4
3
2

Maturity stage

Stage II III - IVa IV V - VI

high porosity

Vp increases with maturity in low porosity kerogen shales.
Gray scale calibration with materials of known impedance. Gray color in image of unknown sample gives its AI values.

October 17, 2007 27th Oil Shale Symposium at CSM
MATURITY GRADE: II

Elongated grains
Very low acoustic impedance

Bakken Formation

62.5 μm 100 μm 1000 μm

8.2 7.4

October 17, 2007 27th Oil Shale Symposium at CSM
MATURITY GRADE: II

Woodford Formation
Elongated grains
Very low acoustic impedance

October 17, 2007
27th Oil Shale Symposium at CSM
MATURITY GRADE: III

Bazhenov Formation

Fine grained, elongated grains
Low acoustic impedance

October 17, 2007

27th Oil Shale Symposium at CSM
MATURITY GRADE: III

Bakken Formation

Elongated grains, connected textures
Low acoustic impedance
MATURITY GRADE: IVa

Bazhenov Formation
Coarser grained
Higher acoustic impedance

October 17, 2007
27th Oil Shale Symposium at CSM
MATURITY GRADE: IVb

Bakken Formation
Coarser grained, elongated texture
Higher acoustic impedance

October 17, 2007 27th Oil Shale Symposium at CSM
MATURITY GRADE: V

Woodford Formation
Coarser grained, elongated texture
Higher acoustic impedance
Transition from kerogen load-bearing (immature) to grain supported (mature) Bakken Shales
HYDROGEN INDEX - ACOUSTIC TEXTURE

Transition from kerogen load-bearing (immature) to grain supported (mature)

Bakken Shales
HYDROGEN INDEX - Vp RELATION

Vp increases with increasing shale maturity.

Bakken Shales
HYDROGEN INDEX - IMPEDANCE

- Impedance increases with increasing shale maturity.
- Ultrasonic values match well with AM values

Micro-Impedance

Bulk Impedance

Bakken Shales
MICRO- AND MACRO IMPEDANCE

- Bulk impedance increases with maturation
- Microstructural changes
- Micro-impedance increases with maturation

Remote detection of kerogen maturity
Statistical tools for texture analysis

Heterogeneity – Coeff. of variation (CV)

\[CV = \frac{\text{std. dev}\{I(x,y)\}}{\text{mean}\{I(x,y)\}} \]

Autocovariance function (ACF)

\[R(m,n) = E\left\{ \left[I(x, y) - m_I \right] \left[I(x + m, y + n) - m_I \right] \right\} \]

Fourier transform

\[\hat{I}(k_x, k_y) = \iint I(x, y) \exp\{-i(xk_x + yk_y)\} \, dx \, dy \]

Power spectrum

\[S(k_x, k_y) = \hat{I} \cdot \hat{I}^* \]

\[S \Leftrightarrow R \]
Autocovariance Function & Textures

From Mukerji and Prasad, 2005
Textural anisotropy ratio (AR)

\[a_r = \frac{a_{\text{max}}}{a_{\text{min}}} \]

From Mukerji and Prasad, 2005
Texture analysis

Textural Heterogeneity – Coeff. of variation CV
Larger contrast of heterogeneity leads to high values of CV

Textural Anisotropy – Anisotropy Ratio AR
Textural anisotropy leads to a directional dependence of the ACF

Textural Scale – Mean correlation length
Larger sized heterogeneities lead to larger correlation lengths

From Mukerji and Prasad, 2005
Textural anisotropy & scales

- Textural anisotropy (AR) increases with increasing correlation length.
- With depth (= maturity), textural anisotropy increase is lower while the mean correlation length increase is larger → Deeper samples have lower anisotropy but larger heterogeneities.

From Mukerji and Prasad, 2005
Textural heterogeneity and scales - depth dependence

- Mean correlation length decreases as textural heterogeneity (CV) increases → deeper samples have larger heterogeneities with higher contrast

From Mukerji and Prasad, 2005
Textural heterogeneity & shale maturity

From Mukerji and Prasad, 2005
Textural anisotropy and maturity
-depth & scale dependence

From Mukerji and Prasad, 2005
Results from SAM Image Analysis

- The coefficient of variation (CV) (a measure of impedance heterogeneity) ranges from 7% to about 12%.
- The mean correlation length tends to increase with increasing heterogeneity.
- Textural heterogeneity, elastic impedance, velocity, and density increase with increasing shale maturity.
- The textural spatial correlation length varies with direction.
- The textural anisotropy (AR) ranges from 10% to about 70% and tends to decrease with increasing depth & maturity.

Quantifiable and consistent patterns linking
 - Texture,
 - Shale maturity, and
 - Wave propagation properties
CONCLUSIONS

- Acoustic impedance in kerogen shales increases with shale maturity.
- Bulk impedance matches well with impedance measured on a micrometer scale.
- With increasing maturity, there is a transition from kerogen supported to grain supported framework.
ACKNOWLEDGEMENTS

The experimental work was done at the Frauenhofer Institute, Saarbrücken in Germany

This research is supported by NSF, PRF, and the Fluids Consortium.