CHATTANOOGA PROCESS

synthetic crude oil
changing the technology

27th Oil Shale Symposium
Colorado School of Mines, Golden CO
October 15, 2007
Chattanooga Process Features

- Fluid Bed Reactor
- Hydrogen Environment
- No combustion in Reactor (no emissions)
- Proven sub-processes
- Continuous Operation
- Multiple Feed stocks: Shale, Sands, Heavy Oil
Fluid Bed Reactor

• Temperature less than 1000°F / 537°C
• 600 psig operating pressure
• Low velocity through reactor zone
Hydrogen because …

- Fluidizing medium
- Reactant
- Heat transfer
 - High heat capacity
 - High conductivity
 - Low viscosity
The Chattanooga Process

Diagram of the Chattanooga Process flowchart, showing various components such as Hot Gas Filler, Recycle Gas Compressor, Reactor with Inlet + Outlet, and Acid Gases, among others.
Patents

• Five Issued
 • Four United States
 • One Canadian
• Wholly Owned by CC
• Additional Patents Pending
Why Chattanooga Process for Oil Shale?

• “For all oil shales, major yield increases can be obtained only by adding more hydrogen to the organics.

• Fluid bed reacting gives oil yields of 125% to 200% higher than standard Fischer-Assay.

• Optimal temperature for process: under 1000°F”

The above are the conclusions of Dr. Burt Davis, Center for Applied Energy Research, U of Kentucky
Environmental Benefits over Other Shale Processes

• Negligible Water Required
• No process Waste Water Discharge
• No SO_2, NO_x or CO_2 Produced in Reactor
• Low Emissions
• Immediate Reclamation of Mined Area
Why Chattanooga Process for Oil Sands?

- 50% reduction in CO$_2$ emissions
- Elimination of process generated S0$_2$, NO$_x$, NH$_3$
- Lower capital and operating costs
- Complete elimination of tailing ponds and ground water contamination
Chattanooga Process Economic Advantages

- High Product Quality (Reactor outlet)
 - 28° – 30° API from Oil Sands
 - 20° - 25° API from Oil Shales
 - 50% reduction of sulfur content

- Lower capital and production costs per bbl
- Reduced energy requirements
- Smaller capacity facilities are feasible
- Self generates fuel and hydrogen plant make up
Chattanooga Process Pilot Plants

- National Center for Upgrading Technology
- Located in Alberta
- Pilot Plant I commissioned in 2000
- Pilot Plant II commissioned in 2004
Results of Tests Conducted at NCUT

PILOT PLANT I:

• Proved reaction kinetics for bitumen
• Produced 32° – 36° API oil

PILOT PLANT II:

• Achieved fluidization
• Extracted ~100% of kerogen contained in oil shale
Results of Tests Conducted at NCUT

PILOT PLANT II:

<table>
<thead>
<tr>
<th>Resource</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado Oil Shale</td>
<td>51.5 gal./US ton *</td>
</tr>
<tr>
<td>Kentucky Oil Shale #1</td>
<td>15.4 gal./US ton **</td>
</tr>
<tr>
<td>Kentucky Oil Shale #2</td>
<td>12.6 gal./US ton ***</td>
</tr>
</tbody>
</table>

* Fischer Assay - 28.4 g/t
** Fischer Assay - 7.7 g/t
*** Fischer Assay - 6.3 g/t
The company: Chattanooga Corp

The direct Team:
M.J. Karpenski, President/CEO,
31 yrs Div. P/CEO Foster-Wheeler
J.A. Doyle, Chairman,
37 yrs EVP, WR Grace Corp
C.G. Kirkbride, Director
son of original Patent author
L.J. McEvoy, Director, VP
34 yrs EVP F-W Corp

F. Hildebrandt, Director, SVP
35 yrs Federated Chem., Ltd.
J.A. Doyle, Chairman,
37 yrs EVP, WR Grace Corp
C.G. Kirkbride, Director
son of original Patent author
L.J. McEvoy, Director, VP
34 yrs EVP F-W Corp

A.M. Howarth, Director, VP
20 yrs operations & Bell Labs
W.E. Poist, Director, VP
32 yrs CPA & Mgmt Cons.
G.J. Porges, Counsel
32 yrs Mng Partner, PHKP

Extended Team:
P.J. Davies, retired, Chief Mining Eng.,
Bechtel Corp.
Dr. T. Knowlton, Technical Dir.,
Particulate Solids Research Inc.

Dr. R. Thais, Chrmn, Christian Bro. U.
Chem. E Dept Head
Dr. B Davis, Professor, U. Kentucky
Center for Applied Energy Research

The Portfolio: 4 US and 1 CA Patents, 3 US and 3 CA Applications
Patent Counsel: Morgan & Finnegan

Key Partners: Alberta Research Council / National Center for Upgrading Technologies (NCUT), PSRI, CAER / UK, DOE
Chattanooga Process Summary

• Proven Technology
 • Ready to move to Demonstration Plant
 • Multiple Feed stocks
 • Patent Protection

• Sound Economics
 • Higher Yield = Higher Profitability
 • Superior Product Quality
 • Upfront Hydrogen Use = Greater Cycle Efficiency
 • Minimal Reclamation Cost

• Environmentally Beneficial
 • Minimal Emissions
 • Minimal Water Requirements and Impacts
 • Shorter Permitting Cycle
Chattanooga Corp
Martin J. Karpenski, CEO/President

Thank you.

973-377-1848
Mkarpenski@aol.com

Email: info@chattanooga-corp.com
www.chattanooga-corp.com