ExxonMobil’s Approach to In Situ Co-Development of Oil Shale and Nahcolite

J. D. Yeakel, W. P. Meurer, R. D. Kaminsky, W. A. Symington, M. M Thomas
Oil Shale or Nahcolite: Which to Choose?

Oil Shale

Nahcolite
Oil Shale or Nahcolite: You Can Have Both

Oil Shale

Nahcolite
Nahcolite & Oil Shale Are Valuable Resources

Oil Shale

400 Billion Barrels Shale Oil

Nahcolite

32 Billion Short Tons

Recoverable Quantities of Shale Oil and Nahcolite Are Not Well Defined

Resource Values from Pitman et al. (1989) and Dyni (1974)
ExxonMobil Process can Recover both Shale Oil and Sodium Minerals

• Heat oil shale *in situ*, for example with Electrofrac™ electrically conductive fractures
 – Will preserve sodium mineral value
 – Enhance porosity and permeability
• Produce oil and gas
• Water flood to recover residual hydrocarbons and sodium minerals
• In situ pyrolysis followed by nahcolite recovery patent pending
Outline

• What is Nahcolite?
• Mode and Occurrence of Nahcolite
• ExxonMobil Concept for Recovery of Nahcolite and Oil Shale Value
 – Preservation of Sodium Mineral Value
 – Enhanced Porosity and Permeability
What is Nahcolite?

- Nahcolite = NaHCO₃
- Natural form of baking soda
- Chemically related minerals include:
 - Natrite (Na₂CO₃)
 - Thermonatrite (Na₂CO₃·H₂O),
 - Trona (Na₃H(CO₃)₂·2H₂O),
 - Natron (Na₂CO₃·10H₂O)
- First identified in a lava tunnel at Mount Vesuvius
- Readily soluble in water
Nahcolite Present in Several Forms

Nahcolite occurs as:

- Nonbedded crystalline aggregates
- Finely disseminated crystals in oil shale – laterally continuous units
- Brown microcrystalline beds
- White coarse-grained beds

Using Conventional Solution Mining Recovery Methods

- Bedded nahcolite more easily recoverable
- Crystalline aggregates and disseminated crystals difficult to recover due to kerogenous oil shale matrix

Photos from USGS Prof. Paper 1310 (1987)
ExxonMobil Concept Will Preserve Sodium Value & Increase Porosity & Permeability

Phase I: Drill wells, place fractures begin heating

Phase II: Heating causes conversion of kerogen to oil and gas

Nahcolite partially altered to other water soluble sodium minerals (sodium carbonates).

Kerogen conversion fractures heated and unheated rock, increasing porosity & permeability.
Sodium Mineral Value Preserved

Theoretical

• As temperature increases nahcolite breaks down to form natrite and/or trona
 – \(2\text{NaHCO}_3 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2\)
 – \(5\text{NaHCO}_3 \rightarrow \text{Na}_3\text{H}((\text{CO}_3)_2 \cdot 2\text{H}_2\text{O} + \text{Na}_2\text{CO}_3 + 2\text{CO}_2\)
 – \(3\text{NaHCO}_3 + \text{H}_2\text{O} \rightarrow \text{Na}_3\text{H}((\text{CO}_3)_2 \cdot 2\text{H}_2\text{O} + \text{CO}_2\)

• Both natrite and trona are highly water soluble

• At very high temperatures (> 800 °C) natrite breaks down to form disodium oxide
 – \(\text{Na}_2\text{CO}_3 \rightarrow \text{Na}_2\text{O} + \text{CO}_2\)
Nahcolite Will Be Converted to Soda Ash

- Majority of rock heated by *in situ* methods will be at temperatures of 400-700 °C
- Carbon dioxide fugacity will be high due to:
 - Conversion of nahcolite to natrite
 - Conversion of kerogen to hydrocarbons
- Carbon dioxide fugacity will remain high even at higher than process temperatures
 - Breakdown of calcite and dolomite
- Majority of heated nahcolite will be converted to natrite (soda ash)
 - Soda ash is water soluble
 - Soda ash can be readily converted to nahcolite by CO₂ addition
 - Soda ash stable to 1000 °C as either solid or liquid at high CO₂ concentrations
Starting materials include both homogeneous mixes and sandwiches of pure nahcolite and oil shale.

Mixtures heated to 375 and 393 °C for 24 hours in Parr vessel

Run products show:
- Some nahcolite preserved
- Conversion of nahcolite to natrite and trona
- Absence of Na₂O
Experimental Results Verify Sodium Value Preserved

- No Na$_2$O generated
- Nahcolite is not entirely converted to natrite in mixed experiments
- At 393 ºC in sandwiches nahcolite converts to a mixture of natrite and trona
- Mixed experiments suggest that oil shale may retard the breakdown of nahcolite
Volume Expansion Due to Kerogen Conversion

1 Ton of Green River Oil Shale (22% TOC, 42 gal/ton)

Before Conversion
- 8.1 ft³ kerogen
- 8.4 ft³ mineral
- 16.5 ft³ total

After Conversion @ 2400 psi, 750ºF (without liquid cracking to gas)
- 2.9 ft³ coke
- 9.4 ft³ HC vapor
- 6.6 ft³ HC liquid
- 27.3 ft³ total

Experiments Show Porosity Enhanced Even Under Lithostatic Stress

Unreacted Sample

Unstressed (375 °C)

Stressed (375 °C)

Berea sandstone sleeve & caps

Oil shale plug

Very Low Porosity

Abundant Macro Porosity

Numerous Micro Fractures and Pores
ExxonMobil Hydrocarbon & Sodium Mineral Recovery Concept

Phase III: Main Stage of Hydrocarbon Recovery

- Kerogen converted to oil and gas
- Oil and gas flow to production wells
- Nahcolite altered to trona and natrite
- Porosity and permeability increase due to kerogen conversion and volume loss

Phase IV: Post-Heating Recovery and Environmental Restoration

- Volume allowed to cool
- Some production wells converted to water injection wells
- Water circulated through subsurface
- Residual hydrocarbons recovered
- Sodium minerals recovered
- Environmental restoration completed
Summary of ExxonMobil Concept for *In Situ* Recovery of Shale Oil and Nahcolite

Phase I: Drill wells, place fractures, begin heating

Phase II: Early heating, kerogen conversion, shale oil migration, porosity development

Phase III: Full heating, primary shale oil production, nahcolite conversion to natrite / trona

Phase IV: Cooling, water flood, nahcolite recovery, environmental restoration

Patent Pending
Conclusions

• Nahcolite and Oil Shale can be Co-Developed
• Oil Shale Development Should Proceed First
 – Enhanced porosity and permeability
 – No decrease in sodium mineral value
• Nahcolite Recovered by Water Injection after Primary Hydrocarbon Recovery
 – Coincident with residual oil recovery and environmental restoration